Précis—“Linear” Programming with Absolute Value Functionals
نویسندگان
چکیده
منابع مشابه
Technical Note - Some Comments on "Linear" Programming with Absolute-Value Functionals
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملAbsolute value programming
We investigate equations, inequalities and mathematical programs involving absolute values of variables such as the equation Ax + B|x| = b, where A and B are arbitrary m × n real matrices. We show that this absolute value equation is NP-hard to solve, and that solving it solves the general linear complementarity problem. However, we propose a concave minimization problem for its solution that i...
متن کاملAbsolute Value Equation Solution Via Linear Programming
By utilizing a dual complementarity property, we propose a new linear programming method for solving the NP-hard absolute value equation (AVE): Ax−|x| = b, where A is an n×n square matrix. The algorithm makes no assumptions on the AVE other than solvability and consists of solving a few linear programs, typically less than four. The algorithm was tested on 500 consecutively generated random sol...
متن کاملMixed Integer Linear Programming Method for Absolute Value Equations
We formulate the NP-hard absolute value equation as linear complementary problem when the singular values of A exceed one, and we proposed a mixed integer linear programming method to absolute value equation problem. The effectiveness of the method is demonstrated by its ability to solve random problems.
متن کاملPrimal-dual bilinear programming solution of the absolute value equation
We propose a finitely terminating primal-dual bilinear programming algorithm for the solution of the NP-hard absolute value equation (AVE): Ax− |x| = b, where A is an n× n square matrix. The algorithm, which makes no assumptions on AVE other than solvability, consists of a finite number of linear programs terminating at a solution of the AVE or at a stationary point of the bilinear program. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Management Science
سال: 1970
ISSN: 0025-1909,1526-5501
DOI: 10.1287/mnsc.16.5.408